UNIT 3 LESSON 5 - INVERSE VARIATION & RADICAL FUNCTIONS

INVERSE VARIATION: As one quantity increases, one quantity decreases

EQUATION:
$$\mathbf{y} = \frac{k}{x}$$
 , k is a number

"k" can also be found using the product rule for inverse variation. The product rule for inverse variation is

$$x_1y_1 = x_2y_2 = k$$

EX 1) Write an equation to represent the following relationship: y varies inversely with x. When x = 6, y = 25. Then determine the value of y when x = -5.

Take the product rule for inverse variation to write the equation.

$$x_{1}y_{1} = x_{2}y_{2}$$

$$(6)(25) = x_{2}y_{2}$$

$$150 = x_{2}y_{2}$$

$$\frac{150}{x_{2}} = y_{2}$$
If y varies inversely with x, then $y = \frac{150}{x}$
Then determine the value of y when $x = -5$ plug $x = -5$ into the equation $y = \frac{150}{x}$

$$y = \frac{150}{-5} = -30$$
When $x = -5$, $y = -30$

RADICAL FUNCTIONS - The inverse of a quadratic function is known as a square root function. \sqrt{x}

Domain: set of all possible inputs (x-values)

Range: set of all possible outputs (y-values)

Function \sqrt{x} (Increasing function (positive rate))

Function $-\sqrt{x}$ (Decreasing function (negative rate))

EX 2) Graph the function $\sqrt{x-4}$. Determine the domain and range, intervals where the function is increasing or decreasing, positive or negative.

ANSWER:

Graph the function in the calculator (picture to the right).Function is increasing; no decreaseFunction is positive; not negativeDomain is set of all x-values: $x \ge 4$ (where the graph starts on the x-axis)Range is set of all y-values: $y \ge 0$ (where the graph starts on the y-axis)

EX 3) Graph the function $2\sqrt{-x} - 2$. Determine the domain and range, intervals where the function is increasing or decreasing, positive or negative.

ANSWER:

Graph the function in the calculator (picture to the right).

Function is decreasing; no increase

Function is negative; not positive

Domain is set of all x-values: $x \le 0$ (where the graph starts on the x-axis)

Range is set of all y-values: $y \ge -2$ (where the graph starts on the y-axis)

		2
-4	-2	
		-2-