UNIT 3 LESSON 5 - INVERSE VARIATION \& RADICAL FUNCTIONS
INVERSE VARIATION: As one quantity increases, one quantity decreases
EQUATION: $\mathbf{y}=\frac{\boldsymbol{k}}{\boldsymbol{x}}, \mathrm{k}$ is a number
" k " can also be found using the product rule for inverse variation. The product rule for inverse variation is $x_{1} y_{1}=x_{2} y_{2}=k$

EX 1) Write an equation to represent the following relationship: y varies inversely with x. When $x=6$, $y=25$. Then determine the value of y when $x=-5$.

Take the product rule for inverse variation to write the equation.
$\mathrm{x}_{1} \mathrm{y}_{1}=\mathrm{x}_{2} \mathrm{y}_{2}$
$(6)(25)=x_{2} y_{2}$
$150=x_{2} y_{2}$
$\frac{150}{\mathrm{x}_{2}}=\mathrm{y}_{2} \quad \square$ If y varies inversely with x , then $\mathrm{y}=\frac{150}{x}$
Then determine the value of y when $\mathrm{x}=-5 \square$ plug $\mathrm{x}=-5$ into the equation $\mathrm{y}=\frac{150}{x}$
$y=\frac{150}{-5}=-30$
When $x=-5, y=-30$

RADICAL FUNCTIONS - The inverse of a quadratic function is known as a square root function. \sqrt{x}

Domain: set of all possible inputs (x-values) Function \sqrt{x} (Increasing function (positive rate))

Range: set of all possible outputs (y-values)
Function $-\sqrt{x}$ (Decreasing function (negative rate))

EX 2) Graph the function $\sqrt{x-4}$. Determine the domain and range, intervals where the function is increasing or decreasing, positive or negative.

ANSWER:

Graph the function in the calculator (picture to the right).
Function is increasing; no decrease
Function is positive; not negative
Domain is set of all x-values: $x \geq 4$ (where the graph starts on the x-axis)
Range is set of all y-values: $y \geq 0$ (where the graph starts on the y-axis)

EX 3) Graph the function $2 \sqrt{-x}-2$. Determine the domain and range, intervals where the function is increasing or decreasing, positive or negative.

ANSWER:

Graph the function in the calculator (picture to the right).
Function is decreasing; no increase
Function is negative; not positive
Domain is set of all x-values: $x \leq 0$ (where the graph starts on the x-axis)
Range is set of all y-values: $y \geq-2$ (where the graph starts on the y-axis)

