Laws of Exponents

Product of Powers

$\left(x^{2}\right)\left(x^{2}\right)=x^{2+2}=x^{4}$

Negative Exponents

$x^{-2}=\frac{1}{x^{2}} \quad$ OR $\quad \frac{1}{x^{-2}}=x^{2}$

Quotient of Powers

$\frac{x^{3}}{x^{2}}=x^{3-2}=x$

Power raised to a power

$\left(x^{2}\right)^{3}=x^{6} \quad$ OR $\quad(x y)^{3}=x^{3} y^{3}$

Ex 1) $\left(2 x^{2} y^{3} z\right)\left(3 x y^{2} z\right)$ This is the Product of Powers Rule (multiply the constants, add the exponents) $\left(6 x^{3} y^{5} z^{2}\right)$

Ex 2) $\frac{3 x^{2} y^{5} z^{4}}{6 x y^{3} z^{4}}$ This is the quotient of powers rule (divide the constants, subtract the exponents)

$$
\frac{x y^{2}}{2}
$$

Ex 3) $\left(3 x y^{2} z^{5}\right)^{2}$ This is the power raised to a power rule (every term is raised to the outside exponent)

$$
(3)^{2}(x)^{2}\left(y^{2}\right)^{2}\left(z^{5}\right)^{2}=9 x^{2} y^{4} z^{10}
$$

Ex 4) $3 x^{2} y^{-4} z$ This is the negative exponent rule (exponent must be positive)

$$
\frac{3 x^{2} z}{y^{4}}
$$

Ex 5) $4 x^{0} y^{-2} z^{3}$ This has two rules - zero rule and negative exponent rule ($x^{0}=1$)

$$
\frac{4 z^{3}}{y^{2}}
$$

