Completing the square is a technique we usetocreate perfect square trinomial in order to makea quadratic factorable. When you can't perform $\mathrm{A}^{} \mathrm{C}$ to find $\mathrm{B} \rightarrow$ Complete the Square!!!

Completing the Square to Solve Quadratic Equations

 of the Form $a x^{2}+b x+c=0$1. Make sure the equation is in standard form, $a x^{2}+b x+c=0$.
2. Subtract c from both sides of the equation.
3. If a is not equal to 1 , divide each term by a to get a leading coefficient of 1.
4. Add the square of one-half of b to both sides to complete the square.
5. Express the perfect square trinomial as the square of a binomial.
6. Solve by taking the square root of both sides of the equation.

Ex 1) Find the value of c so that the expression is a perfect square trinomial.
$x^{2}+12 x+c$
Step 1) Take half of ' b ' and square it $\left(\frac{b}{2}\right)^{2}$

$$
\mathrm{b}=12 \longrightarrow \text { half of } \mathrm{b}=6 \longrightarrow \text { square it }=6^{2}=36
$$

OR

$\left(\frac{12}{2}\right)^{2}=36$
ANSWER: $\mathrm{x}^{2}+12 \mathrm{x}+36$

Ex 2) Solve $x^{2}-8 x+16=4$ by completing the square.
Step 1) Determine if $x^{2}-8 x+16$ is a perfect square trinomial.
Take half of the value of b and then square the result. If this is equal to the value of c, then the expression is a perfect square trinomial.

$$
\left(\frac{b}{2}\right)^{2}=\left(\frac{-8}{2}\right)^{2}=16
$$

$x^{2}-8 x+16$ is a perfect square trinomial because the square of half of -8 is 16 .

Step 2) Write the left side of the equation as a binomial squared.
Half of b is -4 , so the left side of the equation can be written as $(x-4)^{2}$.

$$
(x-4)^{2}=4
$$

Step 3)
Isolate x.

$$
\begin{array}{ll}
(x-4)^{2}=4 & \text { Perfect square trinomial } \\
x-4= \pm 2 & \text { Take the square root of both sides. } \\
x=4 \pm 2 & \text { Add 4 to both sides. } \\
x=4+2=6 \text { or } x=4-2=2 & \begin{array}{l}
\text { Split the answer into two separate } \\
\text { equations and solve for } x .
\end{array}
\end{array}
$$

Step 4) Determine the solution(s).
The equation has two solutions, $x=2$ or $x=6$.

Ex 3) Solve $5 x^{2}-50 x-120=0$ by completing the square.
Step 1) Determine if $5 x^{2}-50 x-120=0$ is a perfect square trinomial.
The leading coefficient is not 1 .
First divide both sides of the equation by 5 so that $a=1$.

$$
\begin{array}{ll}
5 x^{2}-50 x-120=0 & \text { Original equation } \\
x^{2}-10 x-24=0 & \text { Divide both sides by } 5 .
\end{array}
$$

Now that the leading coefficient is 1 , take half of the value of b and then square the result. If the expression is equal to the value of c, then it is a perfect square trinomial.
$\left(\frac{b}{2}\right)^{2}=\left(\frac{-10}{2}\right)^{2}=25$
$5 x^{3}-50 x-120=0$ is not a perfect square trinomial because the square of half of -10 is not -24 .

Step 2) Complete the square.

$$
\begin{array}{ll}
x^{2}-10 x-24=0 & \text { Equation } \\
x^{2}-10 x=24 & \text { Add } 24 \text { to } \\
x^{2}-10 x+(-5)^{2}=24+(-5)^{2} & \begin{array}{l}
\text { Add the s } \\
\text { of the } x-t e \\
\text { the squar }
\end{array} \\
x^{2}-10 x+25=49 & \text { Simplify }
\end{array}
$$

Step 3) Express the perfect square trinomial as the square of a binomial.
Half of b is -5 , so the left side of the equation can be written as $(x-5)^{2}$.

$$
(x-5)^{2}=49
$$

Step 4) Isolate x.

$$
\begin{aligned}
& (x-5)^{2}=49 \\
& x-5= \pm \sqrt{49}= \pm 7 \\
& x=5 \pm 7 \\
& x=5+7=12 \text { or } x=5-7=-2
\end{aligned}
$$

Equation

$$
x-5= \pm \sqrt{49}= \pm 7 \quad \text { Take the square root of both sides. }
$$

$$
x=5 \pm 7 \quad \text { Add } 5 \text { to both sides. }
$$

Split the answer into two separate equations and solve for x.

Step 5) Determine the solution(s).
The equation $5 x^{2}-50 x-120=0$ has two solutions, $x=-2$ or $x=12$.

