List the rigid motions:
Translations
Reflections
Rotations

List the non-rigid motions:

Dilations

Stretch

Compression

How do you know if it is a rigid motion or non-rigid motion? It is rigid motion if the figure has not changed its shape or size.

Dilation are transformations in which a figure is either enlarged or reduced by a scale factor in relation to a center point.

Scale factor of a figure is a multiple of the lengths of the sides from one figure to the transformed figure. Scale factor notation: \mathbf{k}

Use a ratio of corresponding sides to find the scale factor: $\frac{\text { length of image side }}{\text { length of preimage side }}=$ scale factor
Notation of a dilation $D_{k}(x, y)=(k x, k y)$
Ex 1) Is the following transformation a dilation? Justify your answer using the properties of dilations.

Prove scale factor is constant:

$$
\begin{array}{lll}
\frac{D x^{\prime}}{D x}=\frac{-4}{-2}=2 & \frac{E x^{\prime}}{E x}=\frac{4}{2}=2 & \frac{F x^{\prime}=\frac{4}{F x}}{2}=2 \\
\frac{D y^{\prime}}{D y}=\frac{4}{2}=2 & \frac{E y^{\prime}}{E y}=\frac{2}{1}=2 & \frac{F y^{\prime}}{F y}=\frac{-4}{-2}=2
\end{array}
$$

Since scale factor is constant (all vertices have scale factor $=2$, the following transformation is a dilation.

Ex 2) Is the following transformation a dilation? Justify your answer using the properties of dilations.

$$
\begin{array}{ll}
T U=C V=9 & T^{\prime} U^{\prime}=C^{\prime} V^{\prime}=6 \\
T C=U V=5 & T^{\prime} C^{\prime}=U^{\prime} V^{\prime}=5 \\
\frac{T \prime U^{\prime}}{T U}=\frac{6}{9}=\frac{1}{3} & \frac{T \prime C^{\prime}}{T C}=\frac{5}{5}=1
\end{array}
$$

Since scale factor is NOT constant (all vertices have different scale factors ($\frac{1}{3}$ and 1) the following transformation is NOT a dilation.

Ex 3) The following transformation represents a dilation. What is the scale factor? Does this indicate enlargement, reduction, or congruence?

Prove scale factor is constant:

$$
\frac{A^{\prime} B^{\prime}}{A B^{\prime}}=\frac{2.5}{10}=\frac{1}{4} \quad \frac{A^{\prime} C^{\prime}}{A C}=\frac{3}{12}=\frac{1}{4} \quad \frac{B^{\prime} C^{\prime}=}{B C}=\frac{3.75}{15}=\frac{1}{4}
$$

Since scale factor is constant (all vertices have the same scale factor $=\frac{1}{4}$ the following transformation is a dilation. Since the scale factor is between 0 and 1 , it is a reduction.

