UNIT 4 • APPLICATIONS OF PROBABILITY

Lesson 2: Conditional Probability

Guided Practice 4.2.2

Example 1

The Student Council wants to host a school-wide activity. Council members survey 40 students, asking them to choose either a field trip, a dance, or a talent show. The table below shows the survey results, with the surveyed students numbered 1-40. Construct a two-way frequency table to summarize the data.

Student	Grade	Activity	Student	Grade	Activity
1	10	FT	21	10	D
2	12	D	22	10	FT
3	10	TS	23	12	D
4	10	FT	24	11	D
5	11	D	25	11	TS
6	12	D	26	12	D
7	10	TS	27	12	D
8	10	FT	28	10	D
9	10	FT	29	11	D
10	11	TS	30	11	D
11	12	D	31	12	FT
12	10	TS	32	10	TS
13	11	TS	33	12	D
14	10	FT	34	11	D
15	11	D	35	11	FT
16	10	FT	36	11	FT
17	12	D	37	11	TS
18	10	FT	38	12	TS
19	12	D	39	11	FT
20	11	TS	40	12	TS

Key: TS = Talent show, FT = Field trip, D = Dance

1. Set up a tally table.

There are two characteristics associated with each student: that student's grade and that student's choice of activity. Set up a table that shows "Grade" and "Activity choice" as categories, and all the different characteristics in each category.

Grade	Activity choice		
	Talent show	Field trip	Dance
10			
11			
12			

2. Tally the data.

For each student, draw a tally mark that corresponds to that student's grade and choice of activity in the appropriate cell of the data table. The tally marks for students $1-5$ are shown in the incomplete tally table below.

Grade	Activity choice		
	Talent show	Field trip	Dance
10	I	II	
11			I
12			I

The complete tally table below shows the tally marks for all the students.

Grade	Activity choice		
	Talent show	Field trip	Dance
10	IIII	HH III	II
11	HH	III	HH I
12	II	I	HH IIII

UNIT 4 • APPLICATIONS OF PROBABILITY

Lesson 2: Conditional Probability

3. Create a two-way frequency table.

Count the tally marks in each cell of your tally table. Then, create another table (a two-way frequency table) to show your count results. These results are frequencies. The completed two-way frequency table is shown below.

Grade	Activity choice		
	Talent show	Field trip	Dance
10	4	8	2
11	5	3	6
12	2	1	9

Add all the frequencies; verify that their sum is 40 (since 40 students were surveyed).
$4+8+2+5+3+6+2+1+9=40$

Example 2

The completed two-way frequency table from Example 1 is shown below. It shows the results of a survey designed to help the Student Council choose a school-wide activity.

Grade	Activity choice		
	Talent show	Field trip	Dance
$\mathbf{1 0}$	4	8	2
$\mathbf{1 1}$	5	3	6
$\mathbf{1 2}$	2	1	9

Consider the following events that apply to a random student who participated in the survey.
$T E N$: The student is in the tenth grade.
TWELVE: The student is in the twelfth grade.
FT: The student prefers a field trip.
$T S$: The student prefers a talent show.
Compare $P(T E N \mid F T)$ and $P(F T \mid T E N)$. Are TEN and $F T$ independent?
Compare $P($ TWELVE $\mid T S)$ and $P(T S \mid T W E L V E)$. Are TWELVE and TS independent?
Interpret the results.

UNIT 4 • APPLICATIONS OF PROBABILITY
Lesson 2: Conditional Probability

Instruction

1. Find the totals of all the categories.

Grade	Activity choice			Total
	Talent show	Field trip	Dance	
$\mathbf{1 0}$	4	8	2	14
$\mathbf{1 1}$	5	3	6	14
$\mathbf{1 2}$	2	1	9	12
Total	11	12	17	40

2. Compare $P(T E N \mid F T)$ and $P(F T \mid T E N)$.

$$
\begin{aligned}
& P(T E N \mid F T)=\frac{8}{12} \approx 0.667 \\
& P(F T \mid T E N)=\frac{8}{14} \approx 0.571 \\
& \begin{array}{l}
\text { There were } 12 \text { votes for a field trip; } \\
\text { There by tenth graders. } 14 \text { votes by tenth graders; } \\
8 \text { were for a field trip. }
\end{array} \\
& 0.667>0.571 \text {; therefore, } P(T E N \mid F T)>P(F T \mid T E N) .
\end{aligned}
$$

UNIT 4 • APPLICATIONS OF PROBABILITY

Lesson 2: Conditional Probability

Instruction
3. Determine if TEN and FT are independent.

Remember that events A and B are independent events if $P(B \mid A)=P(B)$ or if $P(A \mid B)=P(A)$.
Compare $P(T E N \mid F T)$ with $P(T E N)$ and $P(F T \mid T E N)$ with $P(F T)$.

$$
\begin{array}{ll}
P(T E N \mid F T)=\frac{8}{12} \approx 0.667 & \begin{array}{l}
\text { There were } 12 \text { votes for a field trip; } \\
8 \text { were by tenth graders. }
\end{array} \\
P(T E N)=\frac{14}{40}=0.35 & \begin{array}{l}
\text { There were } 40 \text { votes in all; } 14 \text { were by } \\
\text { tenth graders. }
\end{array}
\end{array}
$$

$0.667 \neq 0.35$; therefore, $P(T E N \mid F T) \neq P(T E N)$.

$$
\begin{array}{ll}
P(F T \mid \text { TEN })=\frac{8}{14} \approx 0.571 & \begin{array}{l}
\text { There were } 14 \text { votes by tenth graders; } \\
8 \text { were for a field trip. }
\end{array} \\
P(F T)=\frac{12}{40}=0.3 & \begin{array}{l}
\text { There were } 40 \text { votes in all; } 12 \text { were for } \\
\text { a field trip. }
\end{array}
\end{array}
$$

$0.571 \neq 0.3$; therefore, $P(F T \mid T E N) \neq P(F T)$.
Based on the data, TEN and $F T$ seem to be dependent because $P($ TEN $\mid F T) \neq P(T E N)$ and $P(F T \mid T E N) \neq P(F T)$.
4. Interpret the results for $P(T E N \mid F T)$ and $P(F T \mid T E N)$. $P(T E N \mid F T)$ is the probability that a student is in the tenth grade given that he prefers a field trip.
$P(F T \mid T E N)$ is the probability that a student prefers a field trip given that he is in the tenth grade.

The fact that TEN and FT are dependent means that being in the tenth grade affects the probability that a student prefers a field trip, and preferring a field trip affects the probability that a student is in the tenth grade. In this case, being in the tenth grade increases the probability that a student prefers a field trip because $P(F T \mid T E N)>P(F T)$. Also, preferring a field trip increases the probability that a student is in the tenth grade because $P(T E N \mid F T)>P(T E N)$.
$P(T E N \mid F T)>P(F T \mid T E N)$ means that it is more likely that a student is in the tenth grade given that he prefers a field trip than it is that a student prefers a field trip given that he is in the tenth grade.
5. Compare $P(T W E L V E \mid T S)$ and $P(T S \mid T W E L V E)$.

$$
\begin{array}{ll}
P(T W E L V E \mid T S)=\frac{2}{11} \approx 0.182 & \begin{array}{l}
\text { There were } 11 \text { votes for a talent show; } \\
2 \text { were by twelfth graders. }
\end{array} \\
P(T S \mid T W E L V E)=\frac{2}{12} \approx 0.167 & \begin{array}{l}
\text { There were } 12 \text { votes by twelfth graders; } \\
2 \text { were for a talent show. }
\end{array}
\end{array}
$$

$0.182>0.167$; therefore, $P($ TWELVE \mid TS $)>P($ TS \mid TWELVE $)$, but they are close in value. The values are approximately 18% and 17%.
6. Determine if TWELVE and TS are independent.

Events A and B are independent events if $P(B \mid A)=P(B)$ or if $P(A \mid B)=P(A)$.
Compare $P(T W E L V E \mid T S)$ with $P(T W E L V E)$ and $P(T S \mid T W E L V E)$ with $P(T S)$.

$$
\begin{aligned}
& P(\text { TWELVE } \mid \text { TS })=\frac{2}{11} \approx 0.182 \\
& P(\text { TWELVE })=\frac{12}{40}=0.3
\end{aligned}
$$

There were 11 votes for a talent show; 2 were by twelfth graders.

There were 40 votes in all; 12 were by twelfth graders.
$0.182 \neq 0.3$; therefore, $P($ TWELVE \mid TS $) \neq P($ TWELVE $)$.

$$
P(T S \mid T W E L V E)=\frac{2}{12} \approx 0.167
$$

$$
P(T S)=\frac{11}{40}=0.275 \quad l \begin{aligned}
& \text { There were } 40 \text { votes in all; } \\
& 11 \text { were for a talent show }
\end{aligned}
$$

$0.167 \neq 0.275$; therefore, $P(T S \mid T W E L V E) \neq P(T S)$.
Based on the data, TWELVE and TS are dependent because $P($ TWELVE $\mid T S) \neq P($ TWELVE $)$ and $P(T S \mid$ TWELVE $) \neq P(T S)$.

UNIT 4 • APPLICATIONS OF PROBABILITY

Lesson 2: Conditional Probability

Instruction

7. Interpret the results for $P(T W E L V E \mid T S)$ and $P(T S \mid T W E L V E)$.
$P(T W E L V E \mid T S)$ is the probability that a student is in the twelfth grade given that the student prefers a talent show.
$P(T S \mid$ TWELVE $)$ is the probability that a student prefers a talent show given that the student is in the twelfth grade.

The fact that TWELVE and TS are dependent means that being in the twelfth grade affects the probability that a student prefers a talent show, and preferring a talent show affects the probability that a student is in the twelfth grade. In this case, being in the twelfth grade decreases the probability that a student prefers a talent show because $P(T S \mid T W E L V E)<P(T S)$. And preferring a talent show decreases the probability that a student is in the twelfth grade because $P($ TWELVE \mid TS $)<P($ TWELVE $)$.
$P(T W E L V E \mid T S)>P(T S \mid T W E L V E)$, but they are close in value, differing by only about 1%. So it is almost equally likely that a student is in the twelfth grade given that the student prefers a talent show, as it is that a student prefers a talent show given that the student is in the twelfth grade.

UNIT 4 • APPLIICATIONS OF PROBABILITY

Lesson 2: Conditional Probability

Instruction

Example 3

A cafeteria manager recorded the choices of 100 students who each chose one food item and one beverage. The table shows the data.

Beverage choice	Food choice	
	Burger	Pizza
Milk	34	26
Iced tea	24	16

Consider the following events that apply to a randomly chosen student who selects one food item and one beverage.
M : The student selects milk.
B : The student selects a burger.
P : The student selects pizza.
Compare $P(M \mid B)$ and $P(B \mid M)$. Are M and B independent?
Compare $P(M \mid P)$ and $P(P \mid M)$. Are M and P independent?
Interpret the results.

1. Find the totals of all the categories.

Beverage choice	Food choice		Total
	Burger	Pizza	
Milk	34	26	60
Iced tea	24	16	40
Total	58	42	100

UNIT 4 • APPLIICATIONS OF PROBABILITY

Lesson 2: Conditional Probability

Instruction

2. Compare $P(M \mid B)$ and $P(B \mid M)$.

$$
\begin{array}{ll}
P(M \mid B)=\frac{34}{58} \approx 0.586 & \begin{array}{l}
58 \text { burgers were chosen; } 34 \text { were } \\
\text { accompanied by milk. }
\end{array} \\
P(B \mid M)=\frac{34}{60} \approx 0.567 & \begin{array}{l}
60 \text { servings of milk were chosen; } \\
34 \text { were accompanied by a burger. }
\end{array}
\end{array}
$$

$0.586>0.567$; therefore, $P(M \mid B)>P(B \mid M)$, but they are close in value. The values are approximately 59% and 57%.
3. Determine if M and B are independent.

Events A and B are independent if $P(B \mid A)=P(B)$ or if $P(A \mid B)=P(A)$.
Compare $P(M \mid B)$ with $P(M)$ and $P(B \mid M)$ with $P(B)$.

$$
\begin{array}{ll}
P(M \mid B)=\frac{34}{58} \approx 0.586 & \begin{array}{l}
58 \text { burgers were chosen; } 34 \text { were } \\
\text { accompanied by milk. }
\end{array} \\
P(M)=\frac{60}{100}=0.6 & \begin{array}{l}
\text { There were } 100 \text { students, and } \\
60 \text { of them chose milk. }
\end{array}
\end{array}
$$

$0.586 \approx 0.6$; therefore, $P(M \mid B) \approx P(M)$.

$$
\begin{array}{ll}
P(B \mid M)=\frac{34}{60} \approx 0.567 & \begin{array}{l}
60 \text { servings of milk were chosen; } \\
34 \text { were accompanied by a burger. }
\end{array} \\
P(B)=\frac{58}{100}=0.58 & \begin{array}{l}
\text { There were } 100 \text { students, and } \\
58 \text { of them chose a burger. }
\end{array}
\end{array}
$$

$0.567 \approx 0.58$; therefore, $P(B \mid M) \approx P(B)$.
Based on the data, M and B seem to be independent because $P(M \mid B) \approx P(M)$ and $P(B \mid M) \approx P(B)$.
4. Interpret the results for $P(M \mid B)$ and $P(B \mid M)$.
$P(M \mid B)$ represents the probability of a student choosing milk given that he chooses a burger.
$P(B \mid M)$ represents the probability of a student choosing a burger given that he chooses milk.

The conclusion that M and B are independent based on probabilities that are close in value means that choosing milk does not significantly affect the probability of choosing a burger, and choosing a burger does not significantly affect the probability of choosing milk.
$P(M \mid B)>P(B \mid M)$, but they are close in value, differing by only about 1%. So it is almost equally likely that a student chooses milk given that the student chooses a burger, as it is that the student chooses a burger given that the student chooses milk. But because the choices are independent based on probabilities that are close in value, this can be restated more simply as follows: It is almost equally likely that a student chooses milk as that the student chooses a burger.
5. Compare $P(M \mid P)$ and $P(P \mid M)$.

$$
\begin{gathered}
P(M \mid P)=\frac{26}{42} \approx 0.619 \quad \begin{array}{ll}
42 \text { pizza servings were chosen; } \\
26 \text { were accompanied by milk. }
\end{array} \\
P(P \mid M)=\frac{26}{60} \approx 0.433 \\
\begin{array}{ll}
60 \text { servings of milk were chosen; } \\
26 \text { were accompanied by pizza. }
\end{array} \\
0.619>0.433 \text {; therefore, } P(M \mid P)>P(P \mid M) .
\end{gathered}
$$

UNIT 4 • APPLICATIONS OF PROBABILITY

Lesson 2: Conditional Probability

Instruction
6. Determine if M and P are independent.

Events A and B are independent events if $P(B \mid A)=P(B)$ or if $P(A \mid B)=P(A)$.
Compare $P(M \mid P)$ with $P(M)$ and $P(P \mid M)$ with $P(P)$.

$$
\begin{array}{ll}
P(M \mid P)=\frac{26}{42} \approx 0.619 & \begin{array}{l}
42 \text { pizza servings were chosen; } \\
26 \text { were accompanied by milk. } \\
P(M)=\frac{60}{100}=0.6
\end{array} \\
\text { There were } 100 \text { students, and } \\
60 \text { of them chose milk. }
\end{array}
$$

$0.619 \approx 0.6$; therefore, $P(M \mid P) \approx P(M)$.

$$
\begin{array}{ll}
P(P \mid M)=\frac{26}{60} \approx 0.433 & \begin{array}{l}
60 \text { servings of milk were chosen; } \\
26 \text { were accompanied by pizza. } \\
P(P)=\frac{42}{100}=0.42
\end{array} \\
\text { There were } 100 \text { students, and } \\
42 \text { of them chose pizza. }
\end{array}
$$

$0.433 \approx 0.42$; therefore, $P(P \mid M) \approx P(P)$.
Based on the data, M and P seem to be independent because $P(M \mid P) \approx P(M)$ and $P(P \mid M) \approx P(P)$.
7. Interpret the results for $P(M \mid P)$ and $P(P \mid M)$.
$P(M \mid P)$ represents the probability that a student chooses milk given that the student chooses pizza.
$P(P \mid M)$ represents the probability that a student chooses pizza given that the student chooses milk.

The conclusion that M and P are independent based on probabilities that are close in value means that choosing milk does not significantly affect the probability of choosing pizza, and choosing pizza does not significantly affect the probability of choosing milk.
$P(M \mid P)>P(P \mid M)$ means it is more likely that a student chooses milk given that the student chooses pizza than it is that a student chooses pizza given that the student chooses milk. But since the choices are independent based on probabilities that are close in value, this can be restated as follows: It is more likely that a student chooses milk than that a student chooses pizza.

