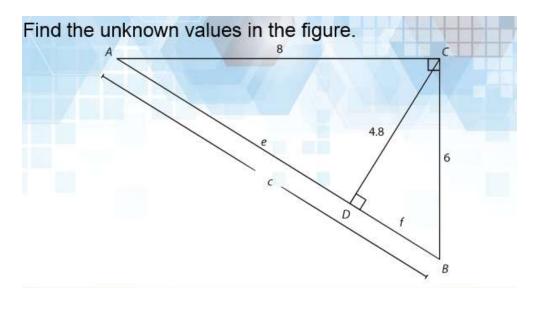

UNIT 4 LESSON 8

USING PYTHAGOREAN TO PROVE SIMILAR TRIANGLES

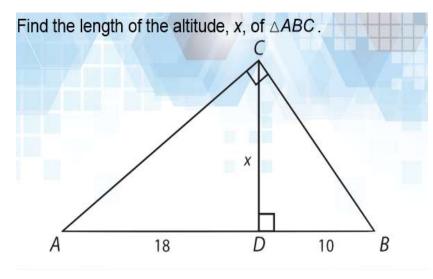

 $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ Distance formula

The <u>converse of the Pythagorean Theorem</u>: if the sum of the squares of the measures of two sides of a triangle equals the square of the measure of the longest side, then the triangle is a right triangle.

To prove the Pythagorean Theorem using similar triangles, you must first identify the similar triangles.

The <u>altitude</u> of a triangle will create two smaller right triangles.

Example 1)



Looking at the diagram, we can use Pythagorean Theorem to solve for all variables.

Larger triangle: $8^2 + 6^2 = c^2$ Smaller triangle: $4.8^2 + f^2 = 6^2$

Larger triangle: $8^2 + 6^2 = c^2$ $100 = c^2$ 10 = cSmaller Triangle: $4.8^2 + f^2 = 6^2$ $f^2 = 12.96$ f = 3.6Length "e" = 10 - 3.6 = 6.4

Example 2)

 Δ ABC is a right triangle. The altitude of Δ ABC is drawn from right angle ACB to the opposite side, creating two smaller similar triangles.

 $\triangle ABC \sim \triangle ACD \sim \triangle CBD$

Use corresponding sides to write a proportion containing x.

shorter leg of $\triangle ACD$	longer leg of $\triangle ACD$
shorter leg of △CBD	$= \frac{1}{10000000000000000000000000000000000$
$\frac{x}{10} = \frac{18}{x}$ $x^2 = 180$	
$x = 6\sqrt{5} = 13.4$	