UNIT 4 LESSON 8

USING PYTHAGOREAN TO PROVE SIMILAR TRIANGLES
Theorem
Pythagorean Theorem
The sum of the squares
of the lengths of the legs
(a and b) of a right triangle
is equal to the square
of the length of the
hypotenuse (c).
$a^{2}+b^{2}=c^{2}$

$\mathrm{d}=\sqrt{\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}}$ Distance formula

The converse of the Pythagorean Theorem: if the sum of the squares of the measures of two sides of a triangle equals the square of the measure of the longest side, then the triangle is a right triangle.

To prove the Pythagorean Theorem using similar triangles, you must first identify the similar triangles.

The altitude of a triangle will create two smaller right triangles.

Example 1)

Find the unknown values in the figure.

Looking at the diagram, we can use Pythagorean Theorem to solve for all variables.

Larger triangle: $8^{2}+6^{2}=c^{2} \quad$ Smaller triangle: $4.8^{2}+f^{2}=6^{2}$

Larger triangle: $8^{2}+6^{2}=c^{2}$

$$
\begin{aligned}
& 100=c^{2} \\
& 10=c
\end{aligned}
$$

Smaller Triangle: $4.8^{2}+f^{2}=6^{2}$
$f^{2}=12.96$
$f=3.6$
Length "e" $=10-3.6=6.4$
$\triangle A B C$ is a right triangle. The altitude of $\triangle A B C$ is drawn from right angle $A C B$ to the opposite side, creating two smaller similar triangles.
$\triangle A B C \sim \triangle A C D \sim \triangle C B D$
Use corresponding sides to write a proportion containing x.
shorter leg of $\triangle A C D \quad$ longer leg of $\triangle A C D$
$\overline{\text { shorter leg of } \triangle C B D}=\frac{\text { longer leg of } \triangle C B D}{}$
$\frac{x}{10}=\frac{18}{x}$
$x^{2}=180$
$x=6 \sqrt{5}=13.4$

