Theorem
Triangle Proportionality Theorem
If a line parallel to one
side of a triangle intersects
the other two sides of
the triangle, then the
parallel line divides
these two sides
proportionally.
In the figure above, $\overline{A C} \\| \overline{D E}$; therefore, $A D=\frac{C E}{D B}=$
$E B$

**Notice the arrows in the middle of DE and AC,

which indicate the segments are parallel

Theorem

Triangle Angle Bisector Theorem
If one angle of a triangle is bisected, or cut in half, then the angle bisector of the triangle divides the opposite side of the triangle into two segments that are proportional to the other two sides of the triangle.

Example 1

Find the length of $\overline{B E}$.

Since $A C \| D E$, the figure proves the Triangle Proportionality Theorem.
$\frac{B D}{D A}=\frac{B E}{E C}$
$\frac{5.5}{2}=\frac{x}{3}$
$2 \mathrm{x}=16.5$
$x=8.25$

Example 2

Prove that $\overline{D E} \| \overline{A C}$.

We must show that the triangles are proportional for the line segments to be parallel.
$\frac{B D}{D A}=\frac{9}{3}=3$
$\frac{B E}{E C}=\frac{10.5}{3.5}=3$
We have proven that the triangles are proportional, thereby $\overline{D E} \| \overline{A C}$.

Use the Triangle Proportionality Theorem to solve.
$\frac{B D}{D C}=\frac{B A}{A C}$
$\frac{x+2}{x+1}=\frac{7}{5.6}$
$5.6(x+2)=7(x+1)$
$5.6 x+11.2=7 x+7$
$x=3$
Plug in the value of x.
$B D=3+2=5$
$D C=3+1=4$

