Identify the x-intercepts, if any, of the following quadratic functions. Determine the equation of the axis of symmetry for each parabola.

1. $h(t)=(-16 t+1)(t-7)$
2. $y=2\left(x-\frac{3}{4}\right)\left(x+\frac{7}{2}\right)$

Determine the equation of each quadratic function in standard form, given the zeros and a point on the graph.
3. $x=-4, x=-2 ;(-3,-1)$
4. $x=15, x=5 ;(0,75)$

Sketch a graph for each of the following quadratic functions.
5. $f(x)=(x-3)(x-4)$
6. $g(x)=(x-3)(x-2)$

UNIT 2 • QUADRATICS

Lesson 2.7: Creating and Graphing Equations Using the x-intercepts

Given the graph of a quadratic function, use the intercepts and a point to write the equation of the function in standard form.
7.

,								$\uparrow y$		1			
							20						
	,								/				
	人						10		/				
	-								-				
								-)				${ }^{x}$
		\%			-2	2		0	-				4
		i						-					
								-					
							-20	0					
							-						
			V				-30						
						1							
			(-3,	-36)			-40						
								\downarrow					

UNIT 2 • QUADRATICS

Lesson 2.7: Creating and Graphing Equations Using the x-intercepts
8.

Use the given information to solve the following problems.
9. A walkway is being installed around a rectangular playground. The playground is 30 feet by 12 feet, and the total area of the playground and the walkway is $1,288 \mathrm{ft}^{2}$. What is the width of the walkway?
10. A high school senior vacationing in Negril, Jamaica, for her senior trip jumped off a 20 -foot cliff into a pool of water. The height of the senior above the water is modeled by the function $h(t)=-t^{2}+\frac{1}{4} t+\frac{5}{4}$, where $h(t)$ is the height of the senior above the water in feet t seconds after jumping off the cliff. How many seconds will it take for the senior to reach the water?

