## Guided Practice 2.5

## Example 1

Identify the real and imaginary parts of the complex number $8+\frac{1}{3} i$.

1. Identify the real part of the complex number.

Identify the part that is not a multiple of $i$.
8 is not a multiple of $i$.
The real part of $8+\frac{1}{3} i$ is 8 .
2. Identify the imaginary part of the complex number.

Identify the part that is a multiple of $i$.
1
$\frac{1}{3}$ is a multiple of $i$.
The imaginary part of $8+\frac{1}{3} i$ is the term $\frac{1}{3} i$.


## Example 2

Rewrite the complex number $2 i$ using a radical.

1. Replace $i$ with $\sqrt{-1}$.

$$
2 i=2 \bullet \sqrt{-1}
$$

2. Place the squared value of any whole multiples of $i$ under the radical sign.

$$
2 \bullet \sqrt{-1}=\sqrt{2^{2} \cdot(-1)}
$$

3. Simplify the radical expression.

$$
\sqrt{2^{2} \bullet(-1)}=\sqrt{4 \bullet(-1)}=\sqrt{-4}
$$



## Example 3

Rewrite the radical $\sqrt{-32}$ using the imaginary unit $i$.

1. Rewrite the radicand as the product of -1 and a positive value.

$$
\sqrt{-32}=\sqrt{(-1) \cdot 32}
$$

2. Rewrite the radical $\sqrt{-1}$ as $i$.

$$
\sqrt{(-1) \bullet 32}=\sqrt{-1} \bullet \sqrt{32}=i \bullet \sqrt{32}
$$

3. If possible, rewrite the real number radicand as the product of two factors, where one factor is the largest perfect square factor of the radicand.
$32=16 \cdot 2$, and 16 is the factor of 32 that is the largest perfect square.

$$
i \bullet \sqrt{32}=i \bullet \sqrt{16 \bullet 2}
$$

4. Rewrite the radicand as the product of two roots, and simplify the square root of the perfect square. Then, write the result as the coefficient of $i$.

$$
i \bullet \sqrt{16 \bullet 2}=i \bullet \sqrt{4^{2} \bullet 2}=4 i \sqrt{2}
$$

## Example 4

Simplify $i^{57}$.

1. Find the remainder of the power of $i$ when divided by 4 .
$14 \bullet 4=56$; therefore, $57 \div 4=14$ remainder 1 .
The remainder is 1 .
2. Use the remainder to simplify the power of $i$.

$$
i^{57}=\left(i^{4}\right)^{14} \bullet i^{1}=1 \bullet i^{1}=i
$$

## Instruction

## Example 5

Impedance, $Z$, is the measure of a circuit's opposition to the flow of current. Complex numbers are used to represent the impedance of a circuit. The resistance, $R$, is the real part of the impedance, and the reactance, $X$, is the coefficient of the imaginary unit $i$. So, impedance is $R+X i$, where $R$ and $X$ are both measured in ohms. A certain circuit has a resistance of 18 ohms and a reactance of 2 ohms . Use a complex number to represent the circuit's impedance.

1. Use the resistance to write the real part of the complex number.

The resistance is 18 ohms; therefore, the real part of the number is 18 .
2. Use the reactance to write the imaginary part of the complex number.

The reactance is the coefficient of $i$.
The reactance is 2 ohms ; therefore, the coefficient of $i$ is 2 .
The imaginary part of the number is $2 i$.
3. The complex representation of impedance is the sum of the real and imaginary parts.

The circuit's impedance in ohms is $18+2 i$.


