Practice 2.13: Solving Systems Algebraically

For problems $1-5$, solve each system of equations algebraically. Check your solutions graphically.

1. $\left\{\begin{array}{l}y=-2 x^{2}-5 \\ y=-5\end{array}\right.$
2. $\left\{\begin{array}{l}y=-x^{2}+4 x+6 \\ y=-2 x+11\end{array}\right.$
3. $\left\{\begin{array}{l}y=x^{2}+2 x-6 \\ y=\frac{1}{2} x-7\end{array}\right.$
4. $\left\{\begin{array}{l}y=-\frac{1}{4} x^{2}+2 x \\ y=x\end{array}\right.$
5. $\left\{\begin{array}{l}y=x^{2}+3 x-9 \\ y=5 x-8\end{array}\right.$

For problems 6-8, solve each system of equations algebraically. Verify that your solutions match the provided graph. Show your work.
6. $\left\{\begin{array}{l}y=4 \\ y=x^{2}-8 x+11\end{array}\right.$

Lesson 2.13: Solving Systems Algebraically

7. $\left\{\begin{array}{l}y=-x \\ y=-x^{2}-6 x\end{array}\right.$
8. $\left\{\begin{aligned} y & =\frac{1}{2} x+\frac{1}{2} \\ y & =\frac{1}{4} x^{2}+\frac{3}{4} x-\frac{5}{2}\end{aligned}\right.$

For problems 9 and 10, use the given information to write a system of equations, and then solve the system algebraically to answer the questions.
9. A soccer ball is kicked so that its height in feet t seconds after it is kicked can be modeled by the function $h(t)=-16 t^{2}+45 t+1$. A hawk flies from its nest 45 feet above the ground at the same time that the player kicks the ball. The hawk's flight can be modeled by the function $h_{2}(t)=45-12 t$. After how many seconds will the hawk and ball first reach the same height above the ground?
10. Janetta is a hairstylist who accepts tips. Her profit P each week can be modeled by the function $P(c)=-200 c^{2}+2400 c-4700$, where c is the charge per customer. Bertram is the manager at the salon. He is paid a flat rate and cannot accept tips. His profit each week can be modeled by the function $P(c)=500$. What must Janetta charge in order for her profit to match Bertram's profit? Explain.

